3.5.38 \(\int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}} \, dx\) [438]

3.5.38.1 Optimal result
3.5.38.2 Mathematica [B] (verified)
3.5.38.3 Rubi [A] (verified)
3.5.38.4 Maple [B] (verified)
3.5.38.5 Fricas [A] (verification not implemented)
3.5.38.6 Sympy [F(-1)]
3.5.38.7 Maxima [B] (verification not implemented)
3.5.38.8 Giac [F]
3.5.38.9 Mupad [F(-1)]

3.5.38.1 Optimal result

Integrand size = 25, antiderivative size = 157 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}} \, dx=\frac {3 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{16 \sqrt {2} a^{5/2} d}+\frac {\sin (c+d x)}{4 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}}+\frac {3 \sin (c+d x)}{16 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \]

output
1/4*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(5/2)+3/16*sin(d*x+c)/a 
/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2)+3/32*arctanh(1/2*sin(d*x+c)*a^( 
1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec 
(d*x+c)^(1/2)/a^(5/2)/d*2^(1/2)
 
3.5.38.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(328\) vs. \(2(157)=314\).

Time = 0.86 (sec) , antiderivative size = 328, normalized size of antiderivative = 2.09 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}} \, dx=\frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (6 \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+14 \sqrt {1-\sec (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)-3 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)-6 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x) \tan (c+d x)-3 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec ^2(c+d x) \tan (c+d x)+6 \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) (1+\sec (c+d x))^2 \tan (c+d x)+6 \arcsin \left (\sqrt {\sec (c+d x)}\right ) (1+\sec (c+d x))^2 \tan (c+d x)\right )}{32 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}} \]

input
Integrate[1/(Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^(5/2)),x]
 
output
(Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(6*Sqrt[1 - Sec[c + d*x]]*Sec[c + d 
*x]^(3/2)*Sin[c + d*x] + 14*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(5/2)*Sin[ 
c + d*x] - 3*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + 
d*x]]]*Tan[c + d*x] - 6*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 
 - Sec[c + d*x]]]*Sec[c + d*x]*Tan[c + d*x] - 3*Sqrt[2]*ArcTan[(Sqrt[2]*Sq 
rt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x]^2*Tan[c + d*x] + 6* 
ArcSin[Sqrt[1 - Sec[c + d*x]]]*(1 + Sec[c + d*x])^2*Tan[c + d*x] + 6*ArcSi 
n[Sqrt[Sec[c + d*x]]]*(1 + Sec[c + d*x])^2*Tan[c + d*x]))/(32*d*Sqrt[1 - S 
ec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(5/2))
 
3.5.38.3 Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.04, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 4752, 3042, 4297, 3042, 4297, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(\sec (c+d x) a+a)^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4297

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3 \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(\sec (c+d x) a+a)^{3/2}}dx}{8 a}+\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a}+\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 4297

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3 \left (\frac {\int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx}{4 a}+\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a}+\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3 \left (\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a}+\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a}+\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 4295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3 \left (\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}-\frac {\int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{2 a d}\right )}{8 a}+\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3 \left (\frac {\text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a}+\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

input
Int[1/(Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^(5/2)),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((Sec[c + d*x]^(5/2)*Sin[c + d*x])/( 
4*d*(a + a*Sec[c + d*x])^(5/2)) + (3*(ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]* 
Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]/(2*Sqrt[2]*a^(3/2)*d) + 
(Sec[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2))))/(8*a) 
)
 

3.5.38.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4297
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[b*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Cs 
c[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Simp[d*((m + 1)/(b*(2*m + 1))) 
 Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ 
[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && EqQ[m + n, 0] && LtQ[m, 
-2^(-1)] && IntegerQ[2*m]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.5.38.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(303\) vs. \(2(128)=256\).

Time = 1.66 (sec) , antiderivative size = 304, normalized size of antiderivative = 1.94

method result size
default \(-\frac {\left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{3} \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (2 \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+5 \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-3 \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )}{\sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )\right )}{32 d \,a^{3} \left (-\frac {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\right )^{\frac {5}{2}} \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right )^{2} \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\) \(304\)

input
int(1/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/32/d/a^3*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^3*(-2*a/((1-cos(d*x+c))^2*cs 
c(d*x+c)^2-1))^(1/2)*(2*(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(1-cos(d* 
x+c))^3*csc(d*x+c)^3+5*(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+ 
c)+csc(d*x+c))-3*arctan(1/(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d 
*x+c)+csc(d*x+c))))/(-((1-cos(d*x+c))^2*csc(d*x+c)^2-1)/((1-cos(d*x+c))^2* 
csc(d*x+c)^2+1))^(5/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^2/(-(1-cos(d*x+c) 
)^2*csc(d*x+c)^2-1)^(1/2)
 
3.5.38.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 408, normalized size of antiderivative = 2.60 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}} \, dx=\left [\frac {3 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (3 \, \cos \left (d x + c\right ) + 7\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {3 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) - 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (3 \, \cos \left (d x + c\right ) + 7\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \]

input
integrate(1/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")
 
output
[1/64*(3*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)* 
sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + 
a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a) 
/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*sqrt((a*cos(d*x + c) + a)/cos( 
d*x + c))*(3*cos(d*x + c) + 7)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^3*d*cos 
(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/3 
2*(3*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt 
(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt( 
cos(d*x + c))/(a*sin(d*x + c))) - 2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c) 
)*(3*cos(d*x + c) + 7)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c 
)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]
 
3.5.38.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(1/cos(d*x+c)**(5/2)/(a+a*sec(d*x+c))**(5/2),x)
 
output
Timed out
 
3.5.38.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 84332 vs. \(2 (128) = 256\).

Time = 14.83 (sec) , antiderivative size = 84332, normalized size of antiderivative = 537.15 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate(1/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")
 
output
1/32*(512*((2*sin(2*d*x + 2*c) + sin(d*x + c))*cos(5/2*d*x + 5/2*c) + cos( 
5/2*d*x + 5/2*c)*sin(4*d*x + 4*c) + 2*cos(5/2*d*x + 5/2*c)*sin(3*d*x + 3*c 
) + (2*cos(2*d*x + 2*c) + cos(d*x + c))*sin(5/2*d*x + 5/2*c) + cos(4*d*x + 
 4*c)*sin(5/2*d*x + 5/2*c) + 2*cos(3*d*x + 3*c)*sin(5/2*d*x + 5/2*c))*cos( 
5*d*x + 5*c)^2 + 2560*(5*(2*sin(2*d*x + 2*c) + sin(d*x + c))*cos(5/2*d*x + 
 5/2*c) + cos(5/2*d*x + 5/2*c)*sin(5*d*x + 5*c) + 5*cos(5/2*d*x + 5/2*c)*s 
in(4*d*x + 4*c) + 10*cos(5/2*d*x + 5/2*c)*sin(3*d*x + 3*c) - (10*cos(2*d*x 
 + 2*c) + 5*cos(d*x + c) + 1)*sin(5/2*d*x + 5/2*c) - cos(5*d*x + 5*c)*sin( 
5/2*d*x + 5/2*c) - 5*cos(4*d*x + 4*c)*sin(5/2*d*x + 5/2*c) - 10*cos(3*d*x 
+ 3*c)*sin(5/2*d*x + 5/2*c))*cos(8/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2 
*d*x + 5/2*c)))^2 + 10240*(5*(2*sin(2*d*x + 2*c) + sin(d*x + c))*cos(5/2*d 
*x + 5/2*c) + cos(5/2*d*x + 5/2*c)*sin(5*d*x + 5*c) + 5*cos(5/2*d*x + 5/2* 
c)*sin(4*d*x + 4*c) + 10*cos(5/2*d*x + 5/2*c)*sin(3*d*x + 3*c) - (10*cos(2 
*d*x + 2*c) + 5*cos(d*x + c) + 1)*sin(5/2*d*x + 5/2*c) - cos(5*d*x + 5*c)* 
sin(5/2*d*x + 5/2*c) - 5*cos(4*d*x + 4*c)*sin(5/2*d*x + 5/2*c) - 10*cos(3* 
d*x + 3*c)*sin(5/2*d*x + 5/2*c))*cos(6/5*arctan2(sin(5/2*d*x + 5/2*c), cos 
(5/2*d*x + 5/2*c)))^2 + 10240*(5*(2*sin(2*d*x + 2*c) + sin(d*x + c))*cos(5 
/2*d*x + 5/2*c) + cos(5/2*d*x + 5/2*c)*sin(5*d*x + 5*c) + 5*cos(5/2*d*x + 
5/2*c)*sin(4*d*x + 4*c) + 10*cos(5/2*d*x + 5/2*c)*sin(3*d*x + 3*c) - (10*c 
os(2*d*x + 2*c) + 5*cos(d*x + c) + 1)*sin(5/2*d*x + 5/2*c) - cos(5*d*x ...
 
3.5.38.8 Giac [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}} \, dx=\int { \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(1/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")
 
output
integrate(1/((a*sec(d*x + c) + a)^(5/2)*cos(d*x + c)^(5/2)), x)
 
3.5.38.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int(1/(cos(c + d*x)^(5/2)*(a + a/cos(c + d*x))^(5/2)),x)
 
output
int(1/(cos(c + d*x)^(5/2)*(a + a/cos(c + d*x))^(5/2)), x)